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LiDAR Generative Models
Representing the probability distribution of LiDAR data (range image/point cloud)
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LiDAR Generative Models
A powerful data prior for downstream tasks (e.g. completion and sim-to-real)
[Zyrianov+ ECCV’22] [Nakashima+ ICRA’24] [Ran+ CVPR’24] [Nakashima+ WACV’23] …
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Diffusion Models of Range Images [Zyrianov+ ECCV’22] [Nakashima+ ICRA’24] [Ran+ CVPR’24]

Pros: High-quality samples, stable training, post-hoc conditioning w/o re-training

Cons: A large number of steps (NN evaluation) are required for high-quality sampling

Related Work
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Diffusion Models of Range Images [Zyrianov+ ECCV’22] [Nakashima+ ICRA’24] [Ran+ CVPR’24]

Pros: High-quality samples, stable training, post-hoc conditioning w/o re-training

Cons: A large number of steps (NN evaluation) are required for high-quality sampling

Related Work
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R2Flow (Range–Reflectance Flow)
Modeling LiDAR images w/ easy-to-approximate straight trajectories + efficient NN architecture

Our Approach
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Formulation using Rectified Flow [Liu+ ICLR’23] [Lee+ arXiv’24]

A neural ODE that yields the straight trajectories 𝒙𝑡 0 ≤ 𝑡 ≤ 1

Flow field 𝑣𝜃  is a neural network trained to follow a uniform velocity 𝒙1 − 𝒙0

Our Approach

𝑑𝒙𝑡 = 𝑣𝜃 𝒙𝑡 , 𝑡  𝑑𝑡 from 𝒙0 (latent) to 𝒙1 (data point)
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Formulation using Rectified Flow [Liu+ ICLR’23] [Lee+ arXiv’24]

A neural ODE that yields the straight trajectories 𝒙𝑡 0 ≤ 𝑡 ≤ 1

Flow field 𝑣𝜃  is a neural network trained to follow a uniform velocity 𝒙1 − 𝒙0

Our Approach

𝑑𝒙𝑡 = 𝑣𝜃 𝒙𝑡 , 𝑡  𝑑𝑡 from 𝒙0 (latent) to 𝒙1 (data point)

Step 1: Training initial flows Step 2: Straightening flows Step 3: Time-step distillation
Train 𝑣𝜃 w/ random pairs Re-train 𝑣𝜃 w/ generated pairs
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Architecture of Estimator 𝑣𝜃

We learn the estimator 𝑣𝜃  in the pixel space for precision

We modify HDiT (efficient ViT w/ local attention) [Crowson+ ICML’24] 
to process the panoramic and spatially-aligned LiDAR structure

Our Approach
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Experiments
Qualitative Comparison w/ Baselines



Unconditional Generation
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Unconditional Generation

Training data
KITTI-360 [Liao+ TPAMI’22]

LiDM (diffusion)
[Ran+ CVPR’24]

R2DM (diffusion)
[Nakashima+ ICRA’24]

R2Flow
(Ours)

200 steps 256 steps 256 steps
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LiDM (diffusion)
[Ran+ CVPR’24]

R2DM (diffusion)
[Nakashima+ ICRA’24]

R2Flow
(Ours)

200 steps 256 steps 256 steps
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KITTI-360 [Liao+ TPAMI’22]
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