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Motivation
3D LiDAR sensors are important for robotics applications

Obstacle detection
[Lang et al. CVPR’19]

Semantic segmentation
[Behley et al. ICCV’19]



Motivation
Issue: domain gaps in LiDAR perception tasks

Simulation Real
NoisyClean

Ray-drop
(missing points)

High resolution Low resolution
SparseDense

images from [Yi et al. CVPR’21]

We propose LiDAR data priors for bridging the domain gaps
using deep generative models



Training GANs on LiDAR images
[Caccia et al. IROS’19]

Latent space

Range image

Towards LiDAR Generative Models

Training GANs w/ invertible corruption
[Bora et al. ICLR’18] [Kaneko et al. CVPR’20]

Dataset Samples Noise-aware GAN on LiDAR images
[Nakashima et al. IROS’21]

+ Robustness on ray-drop noises
– Fixed resolution = LiDAR dependence
– No demonstration on perception tasks
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LiDAR Range Images as 2D Neural Fields
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[Nakashima et al. IROS’21]
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[Nakashima et al. IROS’21]
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LiDAR Range Images as 2D Neural Fields
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LiDAR Range Images as 2D Neural Fields
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Training data (KITTI)

Latent interpolation w/ our GAN

Complete depth

Ray-drop probability



Fidelity and Diversity
Image-level: 
SWD on inverse depth maps

Feature-level:
FPD and MMD2 on PointNet features

Point-level:
JSD, COV, MMD, and 1-NNA

l-WGAN Ours Real



Applications



Decomposition
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Restoration
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Upsampling

Target 1× reconstruction 2× reconstruction 4× reconstruction

1. Optimize latent code 2. Densify angular queries



Sim2Real Sementic Segmentation
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Sim2Real Sementic Segmentation
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Sim2Real Sementic Segmentation

Input GTBaseline Ours

1.7% mIoU 46.3% mIoU

w/ our ray-drop rendering



Sim2Real Sementic Segmentation

GTA-LiDAR (simulation) → KITTI (real) [Wu+, ICRA’19]



Thank you!

Code and models are available at
https://kazuto1011.github.io/dusty-gan-v2


