

Generative Range Imaging for Learning Scene Priors of 3D LiDAR Data

Kazuto Nakashima* Kyushu University

Yumi Iwashita NASA/Caltech JPL **Ryo Kurazume** Kyushu University

Jet Propulsion Laboratory California Institute of Technology

Motivation

3D LiDAR sensors are important for robotics applications

Obstacle detection [Lang et al. CVPR'19]

[Behley et al. ICCV'19]

Motivation

Issue: domain gaps in LiDAR perception tasks

High resolutionLow resolutionSimulationRealDenseSparseCleanNoisy

We propose LiDAR data priors for bridging the domain gaps using **deep generative models**

images from [Yi et al. CVPR'21]

Towards LiDAR Generative Models

[Caccia et al. IROS'19]

Training GANs w/ invertible corruption [Bora et al. ICLR'18] [Kaneko et al. CVPR'20]

Noise-aware GAN on LiDAR images [Nakashima et al. IROS'21]

- + Robustness on ray-drop noises
- Fixed resolution = LiDAR dependence
- No demonstration on perception tasks

Training data (KITTI)

Latent interpolation w/ our GAN

Fidelity and Diversity

Image-level:

SWD on inverse depth maps

Method	16 imes 128	32×256	64×512	Mean
Vanilla GAN [7] DUSty [30]	0.397 0.353	0.371 0.353	0.746 0.768	0.505 0.491
Ours	0.378	0.278	0.611	0.422
Training set	0.257	0.207	0.765	0.410

Point-level:

JSD, COV, MMD, and 1-NNA

Method	JSD \downarrow	$\mathrm{COV}\uparrow$	$MMD\downarrow$	1-NNA \downarrow
r-GAN [1]	21.73	0.013	17.51	1.000
1-WGAN [1]	4.91	0.324	8.62	0.896
Vanilla GAN [7]	10.31	0.290	12.34	0.986
DUSty [30]	3.00	0.375	9.41	0.898
Ours	3.04	0.388	9.12	0.892
Training set	2.80	0.362	0.765	0.890

Feature-level:

FPD and MMD² on PointNet features

	2048]	points	64 imes 512 (full)			
Method	FPD \downarrow	$\mathrm{MMD}^2\downarrow$	FPD ↓	$\mathrm{MMD}^2\downarrow$		
r-GAN [1] 1-WGAN [1]	787.45 129.35	45.02 10.65	-			
Vanilla GAN [7] DUSty [30] Ours	3629.36 232.90 96.11	671.14 39.62 3.66	3648.68 241.32 93.85	675.24 42.66		

Applications

Decomposition

Target

Optimize latent code

Reconstruction

Complete depth

Ray-drop probability

Target Optimize latent code Reconstruction Complete depth Ray-drop probability

Upsampling

Test:

GTA-LiDAR (simulation) \rightarrow **KITTI** (real) [Wu+, ICRA'19]

	D.	A^{\dagger}	Input modality [‡]			y [‡]		Car			Pedestrian		
Method	D	F	С	R	I	М	Precision	Recall	IoU	Precision	Recall	IoU	mIoU
SqueezeSegV2 [47]§	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_	_	57.4	_	_	23.5	40.5
DAN [25]		\checkmark	\checkmark				56.3	76.4	47.8	20.8	68.9	19.0	33.4
CORAL [41]		\checkmark	\checkmark				56.5	82.1	50.2	26.0	50.3	20.7	35.5
HoMM [9]		\checkmark	\checkmark				59.4	85.2	53.9	26.2	66.8	23.2	38.6
ADDA [45]		\checkmark	\checkmark				56.7	83.5	50.7	24.7	58.5	21.0	35.9
CyCADA [15]	\checkmark	\checkmark	\checkmark				40.9	72.1	35.3	17.8	52.4	15.3	25.3
ePointDA [52]§	\checkmark	\checkmark	\checkmark				73.4	81.9	63.4	29.4	56.0	23.9	43.7
ePointDA [52]	\checkmark	\checkmark	\checkmark				75.2	84.7	66.2	28.7	65.2	24.8	45.5
Ours (config-E) \S	\checkmark		\checkmark	\checkmark			74.8	87.0	67.3	28.8	67.1	25.2	46.3

Thank you!

Code and models are available at

https://kazuto1011.github.io/dusty-gan-v2

