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Introduction
We propose a noise-aware 2D GAN for 3D LIiDAR data

Motivation
Generative modeling for restoring LQ data
Modeling LiDAR point clouds is non-trivial

A bijective 2D angular grid is effective
for generative modeling [Caccia et al. IROS19]

Challenges
The 2D representation is noisy!

A laser measurement often involves
missing points (dropout noise on 2D)

Training GANs is susceptible
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Samples from KITTI dataset [Geiger et al. IJRR'13]



Approach

Idea: learning depth maps with measurement uncertainty as 2D styles
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Results

Synthesis by sampling latents Reconstruction by optimizing latents
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3D quality & diversit 5 3D error
(1-nearest neigyhbor accurac% 99.99 94.62 (Chamfer distance) 531 —> 1.64
2D quality ¢ 158 — 0,151 2D error 789 —> 0.155

(Sliced Wasserstein distance) (Root mean squared error)



Application

The trained generator can be used as a generative scene prior
to improve incomplete/unreliable observations
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Our code is available at https://github.com/kazuto1011/dusty-gan



