Learning to Drop Points for LiDAR Scan Synthesis

Kazuto Nakashima

Ryo Kurazume

Kyushu University

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021

Introduction

We propose a noise-aware 2D GAN for 3D LiDAR data

Motivation

- Generative modeling for restoring LQ data
- Modeling LiDAR point clouds is non-trivial
- A bijective 2D angular grid is effective for generative modeling [Caccia et al. IROS'19]

Challenges

- The 2D representation is noisy!
- A laser measurement often involves missing points (**dropout noise on 2D**)
- Training GANs is susceptible

Samples from KITTI dataset [Geiger et al. IJRR'13]

Approach

Idea: learning depth maps with measurement uncertainty as 2D styles

1. Learning to drop points on 2D angular grid

2. A differentiable relaxation to model dropout noises

Differentiable Bernoulli sampler using Gumbel-Sigmoid distribution

[Jang et al. ICLR'17] [Maddison et al. ICLR'17]

Results

Synthesis by sampling latents

Reconstruction by optimizing latents

	Baseline (Standard GAN)	Ours		Baseline (Standard GAN)	Ours
3D quality & diversity (1-nearest neighbor accuracy)	99.99 →	94.62	3D error (Chamfer distance)	5.31	1.64
2D quality (Sliced Wasserstein distance)	0.158	0.151	2D error (Root mean squared error)	0.280	0.155

Application

The trained generator can be used as **a generative scene prior** to improve incomplete/unreliable observations

Our code is available at https://github.com/kazuto1011/dusty-gan