Generative Range Imaging for Learning Scene Priors of 3D LIDAR Data
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Motivation

3D LIDAR sensors are indispensable for robotics applications

Semantic segmentation
[Behley et al. ICCV’19]
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Obstacle detection
[Lang et al. CVPR’19]

However, domain gaps are problematic on perception tasks

“ray-drop”
(missing points)
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Related Work

Recent GANs solved many image processing tasks

Nearest Bilinear Bicubic INR-based
(19.24) (29.51) (30.3) (11.81)

(e) Image Inpainting (f) Semantic Manipulation

mGANprior
[Gu et al. CVPR’20]

(d) Image Denoising

INR-GAN
[Skorokhodov et al. CVPR’21]

Challenges:
= (Generative modeling of 3D LiDAR data using GANs
= Data-level domain adaptation using the trained GAN

Approach: LIDAR Range Images as 2D Neural Fields

We assume a function G that transforms angles (6, ¢)
to {range x4, ray-drop probability x,,} conditioned by latent z

Map to style space w

/\ and control G weights

Range x4

Latent code z 1 m~Bernoulli(x,,)
A ‘\x)= XqOm Range image x
? @ Query > G ; M ‘
5 (6,9) -
il I S Generator *  Differentiable
Azimuth 6 (Neural fields) ray-drop rendering

[Nakashima et al. IROS’21]

GAN loss

* Training: the function G is trained
as a GAN generator

= The ray-drop sampling is
approximated by Gumbel-Sigmoid

= |nversion: optimize the style
code w (+ tune G weights) by

Analogy of LIDAR measurement

Angles (6, ¢)

Range x,
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Applications

Decomposition

1x reconstruction 2x reconstruction 4x reconstruction
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1. Optimize latent code

2. Densify angular queries

minimizing masked pixel-wise error

= (Generated samples

Sampled data (range image)

Sampled data (point cloud)

I-WGAN
(point-based)

Ours
(image-based)

Densify the angular queries (6, ¢)
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= Quantitative comparison in fidelity and diversity

Image-level Point-level Feature-level (PointNet)
Method SWD! 1-NNAL FPD! MMD2!
pon-based <” E\%%EES( eé :/II [I)C;ML, 5 NA 1,000 787.45 45.92
\_ [Achilioptas et al. ICML’18] N/A 0.896 129.35 10.65
[ Péi[;‘(':'l'aaegmos o 0.505 0.986 3629.36 671.14
Imagé;\t,j\?sed< e o osar 0491 0.898 232.90 39.62
\ Ours 0.422 0.892 96.11 3.66

= Sim2Real semantic segmentation: the ray-drop probability
can be used for rendering ray-drop noises on simulation data

Unrealistic Realistic
=1 s Rendering ray-drop  |ae=g —— |
by GAN inversion Segmegtalltlon
mode
> /\ d LiDAR __———_| | Labels
Latent
_ | Frequency GAN priors
.Ienpu.t GT Simulation only  [Wu et al. ICRA'19] (Ours)
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Comparison with SOTA results (GTA-LIDAR to KITTI task)

loU (intersection over union)

Method Ray-drop rendering Car Pedestrian Mean
SqueezeSegV/?2

WU et al. ICRA'19] Frequency from KITTI S57.4 23.5 40.5
ePointDA

[Zhao et al. AAAI’'21] CyC|eGAN_based 66.2 24.8 45.5
Ours GAN inversion 67.3 25.2 46.3

= For more details and results:
kazuto1011.github.io/dusty-gan-v2



https://kazuto1011.github.io/

