Generative Range Imaging for Learning Scene Priors of 3D LiDAR Data

Kazuto Nakashima¹ Yumi Iwashita² Ryo Kurazume¹ ¹Kyushu University ²Jet Propulsion Laboratory, Caltech

Motivation

• 3D LiDAR sensors are indispensable for robotics applications

Obstacle detection [Lang et al. CVPR'19]

[Behley et al. ICCV'19]

However, **domain gaps** are problematic on perception tasks

Related Work

Recent GANs solved many image processing tasks

mGANprior [Gu et al. CVPR'20]

(f) Semantic Manipulation

Challenges:

(d) Image Denoising

- Generative modeling of 3D LiDAR data using GANs

Approach: LiDAR Range Images as 2D Neural Fields

We assume a function G that transforms angles (θ, ϕ) to {range x_d , ray-drop probability x_n } conditioned by latent z

- **Training:** the function *G* is trained as a GAN generator
- The ray-drop sampling is approximated by Gumbel-Sigmoid **Inversion:** optimize the style code w (+ tune G weights) by minimizing masked pixel-wise error

Generated samples

Quantitative comparison in fidelity and diversity

		Image-level	Point-level	Feature-level (PointNet)	
	Method	SWD↓	1-NNA↓	FPD↓	MMD ² ↓
Point-based GAN	r-GAN [Achilioptas et al. ICML'18]	N/A	1.000	787.45	45.92
	I-WGAN (EMD) [Achilioptas et al. ICML'18]	N/A	0.896	129.35	10.65
Image-based GAN	Vanilla GAN [Caccia et al. IROS'19]	0.505	0.986	3629.36	671.14
	DUSty [Nakashima et al. IROS'21]	0.491	0.898	232.90	39.62
	Ours	0.422	0.892	96.11	3.66

Applications

Decomposition

Sim2Real semantic segmentation: the ray-drop probability can be used for rendering ray-drop noises on simulation data

Upsampling

D Ja

🚘 Car 🕺 Pedestrian

Comparison with SOTA results (GTA-LiDAR to KITTI task)

		IoU (intersection over union)		
Method	Ray-drop rendering	Car	Pedestrian	Mean
SqueezeSegV2 [Wu et al. ICRA'19]	Frequency from KITTI	57.4	23.5	40.5
ePointDA [Zhao et al. AAAI'21]	CycleGAN-based	66.2	24.8	45.5
Ours	GAN inversion	67.3	25.2	46.3

For more details and results: kazuto1011.github.io/dusty-gan-v2

