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Motivation

Approach: LiDAR Range Images as 2D Neural Fields
§ We assume a function 𝐺 that transforms angles 𝜃, 𝜙

to {range 𝑥!, ray-drop probability 𝑥"} conditioned by latent z

§ 3D LiDAR sensors are indispensable for robotics applications

§ However, domain gaps are problematic on perception tasks
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Semantic segmentation
[Behley et al. ICCV’19]
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Applications
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Related Work
§ Recent GANs solved many image processing tasks

Challenges:
§ Generative modeling of 3D LiDAR data using GANs
§ Data-level domain adaptation using the trained GAN
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mGANprior
[Gu et al. CVPR’20]

INR-GAN
[Skorokhodov et al. CVPR’21]

Image-level Point-level Feature-level (PointNet)
Method SWD↓ 1-NNA↓ FPD↓ MMD2↓
r-GAN
[Achilioptas et al. ICML’18] N/A 1.000 787.45 45.92

l-WGAN (EMD)
[Achilioptas et al. ICML’18] N/A 0.896 129.35 10.65

Vanilla GAN
[Caccia et al. IROS’19] 0.505 0.986 3629.36 671.14

DUSty
[Nakashima et al. IROS’21] 0.491 0.898 232.90 39.62

Ours 0.422 0.892 96.11 3.66
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Analogy of LiDAR measurement

§ Quantitative comparison in fidelity and diversity

§ Training: the function 𝐺 is trained
as a GAN generator

§ The ray-drop sampling is 
approximated by Gumbel-Sigmoid

§ Inversion: optimize the style 
code 𝑤 (+ tune 𝐺 weights) by 
minimizing masked pixel-wise error
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§ Decomposition
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Inversion Inversion

§ Sim2Real semantic segmentation: the ray-drop probability 
can be used for rendering ray-drop noises on simulation data
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§ Restoration
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Rendering ray-drop
by GAN inversion
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Latent

§ Upsampling

1. Optimize latent code 2. Densify angular queries

§ For more details and results:
kazuto1011.github.io/dusty-gan-v2

IoU (intersection over union)
Method Ray-drop rendering Car Pedestrian Mean
SqueezeSegV2
[Wu et al. ICRA’19] Frequency from KITTI 57.4 23.5 40.5

ePointDA
[Zhao et al. AAAI’21] CycleGAN-based 66.2 24.8 45.5

Ours GAN inversion 67.3 25.2 46.3

Comparison with SOTA results (GTA-LiDAR to KITTI task)
PedestrianCar
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https://kazuto1011.github.io/

